Exponential Hermite-Euler splines
نویسندگان
چکیده
منابع مشابه
Generalized Exponential Euler Polynomials and Exponential Splines
Here presented is constructive generalization of exponential Euler polynomial and exponential splines based on the interrelationship between the set of concepts of Eulerian polynomials, Eulerian numbers, and Eulerian fractions and the set of concepts related to spline functions. The applications of generalized exponential Euler polynomials in series transformations and expansions are also given.
متن کاملConstrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملExponential Pseudo-Splines: looking beyond Exponential B-splines
Pseudo-splines are a rich family of functions that allows the user to meet various demands for balancing polynomial reproduction (i.e., approximation power), regularity and support size. Such a family includes, as special members, B-spline functions, universally known for their usefulness in different fields of application. When replacing polynomial reproduction by exponential polynomial reprod...
متن کاملGeometric Hermite interpolation by logarithmic arc splines
This paper considers the problem of G1 curve interpolation using a special type of discrete logarithmic spirals. A ”logarithmic arc spline” is defined as a set of smoothly connected circular arcs. The arcs of a logarithmic arc spline have equal angles and the curvatures of the arcs form a geometric sequence. Given two points together with two unit tangents at the points, interpolation of logari...
متن کاملGeometric Hermite interpolation by cubic G1 splines
In this paper, geometric Hermite interpolation by planar cubic G1 splines is studied. Three data points and three tangent directions are interpolated per each polynomial segment. Sufficient conditions for the existence of such G1 spline are determined that cover most of the cases encountered in practical applications. The existence requirements are based only upon geometric properties of data a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1976
ISSN: 0021-9045
DOI: 10.1016/0021-9045(76)90015-0